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A new analysis of the scattering data for the protein 
particle associated with turnip yellow mosaic virus 
(Sehmidt et al., 1954) has been made using the methods 
outlined above. At the time the data were published, 
hollow-sphere functions corrected for slits of infinite 
height and negligible width had not been calculated, 
and so the data were interpreted by extrapolation 
from available calculations, giving a sphere radius of 
140/~, and an h of 0.75. Applying the same correction 
for the effects of the finite slit widths as was used by 
Schmidt et al. for turnip yellow mosaic nucleoprotein, 
use of Tables 1 and 2 and the methods described above 
essentially confirms the previous results. 

The author wishes to express his gratitude to the 
University of Missouri for financial support, to Dr 
W. W. Beeman for suggesting problems leading to this 
paper, to Dr Bernard Goodman, Dr N. S. Gingrich 
and other members of the University of Missouri 
Physics Department for many helpful discussions and 
suggestions during the writing of the manuscript, and 
to Mr J. B. Combs for aid with the numerical calcula- 
tions. 
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The Splitting, of Layer Lines in X-ray Fibre Diat~rams of Helical Structures: 
Application to Tobacco Mosaic Virus 
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21 Torrington Square, London W.C. 1, England 

(Received 13 June 1955) 

The layer lines in X-ray fibre diagrams of tobacco mosaic virus gel have been observed to be split, 
the extent of the splitting varying with the strain of the virus. This effect is interpreted in terms 
of the helical arrangement of the protein sub-units about the long axis of the particle, and has 
stimulated some general remarks on diffraction by structures of this type. 

I n t r o d u c t i o n  

X-ray fibre diagrams of highly orientated preparations 
of tobacco mosaic virus (TMV) were first obtained by 
Bernal & Fankuchen (1941). Watson (1954) observed 
that  the diagrams contained prominent features 
characteristic of helical structures, and suggested that  
the virus particle, of diameter 150 • and length 3000 A 
(Williams & Steere, 1951) was in fact one giant helical 
molecule, identical protein units being set in helical 
array around the long axis. He showed that in the 
axial repeat period of 69 A there were 3n+ 1 such 
protein units distributed over 3 turns of the helix. I t  
is not possible to determine unequivocally, from 
high-angle meridional reflexions, whether n is 10 
(Watson, 1954) or 12 (Franklin, 1955), but a recent 

interpretation (to be published) of certain other fea- 
tures of the X-ray diagram favours the value 10, 
giving 31 protein units in 3 turns of the helix. 

We have now observed that  in fibre diagrams of 
TMV the intensity maxima do not lie exactly on a set 
of equally spaced layer lines. If one chooses the set 
of equally spaced layer lines which gives the best fit 
with the diagram as a whole, then one finds that  the 
layer lines whose order is a multiple of 3 (1 = 3n) have 
maxima lying exactly on them, whereas for the layer 
lines 1 = 3 n + l  and l = 3n+2 the maxima are dis- 
placed to a small distance on either side of the mean 
layer-line position. The extent of the effect varies with 
the strain of the virus. This phenomenon is readily 
explained in terms of the suggested helical arrange- 
ment of the protein units of which the virus particle 
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Fig. 1. (a) P lo t  of the  orders  n of the  Bessel  func t ions  con t r ibu t ing  to  the  layer  lines l for t he  ease of a periodic r epea t  con- 
ta in ing  u = 7 uni ts  in t = 2 tu rns  of a helix. (These number s  are i l lustrat ive only  and  are no t  those  appropr i a t e  to  TMV 
for which  t is 3 and  u p r o b a b l y  31.) 

The  fami ly  of b roken  lines sa t i s fy  the  e q u a t i o n s / = 2 n - l - 7 m  and  show how the  d iagram m a y  be bui l t  up  b y  repea t ing  
the  line t h rough  the  origin ( t ransform of a s m o o t h  helix) a t  a series of new origins, :~ . . . . .  - - l ,  0, 1, 2, etc.  

(b) The  r igh t -hand  side of the  d iagram is an (n, l) p lo t  as in (a), for the  case when there  are no t  exac t ly ,  b u t  s l ight ly more  
than ,  7 uni t s  in 2 tu rns  of a helix. 

The  le f t -hand  side is m e a n t  to  i l lustrate  the  general  appearance  of the  ac tua l  f ibre d i ag ram t h a t  wou ld  result .  I t  is 
ob t a ined  b y  p u t t i n g  a p lane  of sswametry  in the  (n, l) p lo t  and  indicat ing successive m a x i m a  of the  Bessel- funet ion con- 
t r ibut ions .  

is built. The variation observed among the different 
strains of TMV examined gives some indication of the 
way in which the protein units are bound to one an- 
other. 

Further, a theoretical consideration of the phenome- 
non has led to some new results and general observa- 
tions on diffraction by complex helical structures. 

T h e o r e t i c a l  

1. The split t ing of the layer lines 

I t  will first be necessary to recapitulate briefly the 
theory of diffraction by helical structures (Cochran, 
Crick & Vand~ 1952; referred to ~ubsecluently as 
C. C. V.). We shall adhere as far as possible to the 
notation in C. C. V. ; (r, ~, z) and (R, 9, $) are cylin- 
drical co-ordinates in real and reciprocal space respec- 
tively. 

In a helical molecule the atoms may be considered 
to be arranged on a number of coaxial helices of varying 
radii, each set of structurally equivalent atoms in the 
molecule being uniformly distributed along one such 
helix. If the molecule is built up of sub-units which are 
chemically and structurally identical and lie in 
helical array around the molecular axis, there will be 

one such constituent helix for each atom of the sub- 
unit. I t  is important to note that,  in this case, all the 
constituent helices must be of the same pitch and bear 
the same number of atoms. The azimuth and z co- 
ordinate of the first atom on each helix will, of course, 
vary. 

The Fourier transform of a set of point atoms lying 
along a helix of radius r and pitch P and having a 
separation of p in the z direction is obtained by putting 
down the transform of a smooth helix of the same 
radius and pitch with its origin at a series of points 
separated by a distance 1/p along the $ axis in reci- 
procal space. Each of these origins thus has associated 
with it ~ ~et of level~ 0, 1, . . . ,  n, , . .  of ~p~0ing lIP 
on each of which the amplitude is given by the cor- 
responding Bessel function J,,(2.-eRr). I f  P / p  is ex- 
pressible as a rational fraction zLt, where u and t are 
integers, then the structure repeats exactly after a 
distance c = up = tP  in which there are u units 
(or atoms) and t turns of the helix. There will then be 
layer lines of spacing 1/c in reciprocal space and each 
layer line will contain a contribution of one Bessel 
function from each origin. However, the further away 
an origin is from the layer line considered, the higher 
will be the order of the Bessel function and so the less 
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important  the contribution. This follows since high- 
order Bessel functions contribute only to the scattering 
at high angles and are in any case weak. 

The orders n of the Bessel functions occurring on the 
/th layer-line are given by those values of n satisfying 
the relation (see C. C. V.) 

l = t n + u m ,  (1) 

where m is an integer and specifies the origin from 
which the Bessel function considered emanates. This 
is illustrated schematically in Fig. 1 (a) for a hypothet- 
ical structure in which there is a repeat after two turns 
containing seven units. (These numbers have been 
chosen rather than those obtaining in TMV for the 
sake of greater clarity in the illustration.) 

If P/p  is not rational then there is no true axial 
repeat and theoretically there should be no layer 
lines, the whole of reciprocal space being filled. But, 
since one can always obtain a close approximation to 
Pip  as a rational fraction if one goes to high enough 
integers, the transform will be effectively confined to 
layer lines, or very nearly so (see C. C. V.). The de- 
parture from an exact integral ratio will manifest 
itself as a splitting of the layer lines; tha t  is to say, 
the Bessel-function contributions from different origins 
will no longer lie at  exactly the same level, but will 
lie on either side of the mean layer lines tha t  corre- 
spond to the rational approximation to Pip.  This 
effect is illustrated in Fig. l(b) for the case of 7.1 
units in 2 turns, in contrast to Fig. l(a) where P/p  
is strictly rational and equal to 7/2. 

This is the effect which is observed in TMV. Its 
detailed interpretation is discussed later. 

2. Non-interference of Bessel functions of different order 
When layer-lines show a splitting of this kind it is 

clear tha t  Bessel functions of different order cannot 
interfere in the theoretical expression for the dif- 
fracted intensity, since they fall at different levels in 
reciprocal space. We shall now show tha t  this non- 
interference still holds even when the structure has 
a true axial repeat and any one layer line contains 
contributions from Bessel functions of more than one 
order. 

The structure factor of the repeating unit is for the 
lth layer-line (see C. C. V.) 

F(R,  V, 1/c) = ~ . ~ ,  J~(2xRrj)  
i n 

×exp [i{n(v+lx~)-nq~j+l.2rczj/c}]. (2) 

For any one atom there is a summation over the orders 
n of Bessel functions determined by the selection rule 
(1), and there is a further summation over all the atoms 
in the unit, their co-ordinates being rj, cp# % 

The three-dimensional intensity is given by the 
square of this expression and will contain products of 
Bessel functions of different order. In a fibre diagram, 
however, only the cylindrically averaged intensity is 
relevant; that  is, the theoretical intensity is averaged 

over V- The cross-terms containing V in the exponential 
disappear under this operation, and we are left with 
the result 

<F2(R, 1/c))v = ~, .~ J~,(27~Rrj) 
n i 

+ 2 ~, .Z,.Jn(2xcRri)Jn(2xRrj) 

× cos [n(q)i--~i)+2x(1/c)(zj--zi) ] (3) 

subject to the selection rule (1) for n. 
In this expression products of Bessel functions of 

different order do not occur; tha t  is atoms on different 
radii interfere only through the same Jn's. Now, as 
stated above, the Bessel functions of different order 
on a layer line come from different origins in reciprocal 
space. Any deformation or perturbation of the helix 
shifts these origins and their associated Bessel func- 
tions to new positions, the original layer lines being 
split. Since there is always non-interference between 
Bessel functions of different order, such a perturbation 
does not introduce any discontinuity in the intensity 
pattern. 

Digressing for the moment, we also note tha t  there 
is an interesting connection between the expression (3) 
and the usual result for diffraction by a two-dimen- 
sional periodic structure. The products of Bessel func- 
tions, which produce the characteristic oscillatory 
variation in the intensity along a layer line, have 
weights given by a cosine term very like a two- 
dimensional structure factor. The order n of the Bessel 
function plays the role of an index for rotational 
periodicity just as does the ordinary index l for 
translational periodicity. This relates to a result, first 
pointed out by Crick (1953), for the case when all the 
atoms of the helix lie on one radius. If the positions 
of the atoms are marked by points on the cylindrical 
surface in which they lie and the lat ter  is then un- 
rolled flat, a pat tern of points characteristic of the 
helix will be formed. This pat tern will be reciprocal 
to the array of points formed by plotting the points 
(n, l) satisfying equation (1) in a Cartesian frame 
(Fig. l(a) is an example of such an array). 

Experimental 
Measurements were made on the following three strains 
of TMV: 

(a) Rothamsted strain, prepared by Mr :N. W. Pirie, 
purified by incubation with commercial trypsin. 

(b) U1, a 'normal '  strain. 
~c) U2, a 'mild' strain. 

U1 and U2 were prepared by Dr A. Siegel, Univer- 
sity of California, Los Angeles; their preparation and 
properties have been described in detail (Siegel & 
Wildman, 1954). 

The splitting of the layer lines is most marked in 
the strain U2. The central region of the fibre diagram 
of this strain is shown in Fig. 2. I t  is clear tha t  the 
separation between the inner regions of layer lines 
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Fig. 2. X-ray fibre diagram of orientated gel of strain U2 of 
tobacco mosaic virus. Splitting of the layer lines is clearly 
visible. The pairs of layer lines 1 and 2, and 3 and 4, are 
closer than the average in their inner regions and more 
widely separated in their outer regions Arrows indicate the 
points at which the reversal occurs. 

1 and 2 is less than that  between layer lines 0 and 1 
and that  between layer lines 2 and 3. Similarly, the 
separation between the inner regions of layer lines 
4 and 5 is small, while that  between 3 and 4 and be- 
tween 5 and 6 is large. A little further from the centre 
of the diagram this effect is reversed; the points at 
which this reversal takes place are indicated in Fig. 2 
by arrows. 

The most accurate measurements of the degree of 
displacement of the diffraction maxima from the mean 
layer-line positions are those made on the inner regions 
of the first and second layer lines of the strain U2. 
Using the fact that  there are very nearly 3n÷ 1 units 
in 3 turns, we find that  in U2 there are 31.05±0.01 
protein units in 3 turns of the helix, if n -- 10. In the 
Rothamsted strain and also in the strain U1, the ex- 
tent of the splitting effect is only about one-third of 
that  in TMV and in the same sense. In these strains 
therefore, there are approximately 31.02 units in 3 
turns of the helix. These strains thus differ from the 
strain U2 in having 0-03 fewer units in 3 turns, or 
0.01 fewer units in one turn of the helix. 

D i s c u s s i o n  

The above results lead to the conclusion that  the 
structural difference between one strain of TMV and 
another consists, in part, in a small shift of any one 
protein building unit with respect to its neighbours 
immediately above and below, the extent of the shift 
being 0.01 of the extent of the protein unit, measured 

along any arc about the axis of the particle. Schemat- 
ically, the units may be considered to occupy a wedge- 
shaped volume (Franklin, 1955, see diagram) and the 
shift will, of course, be greatest at the widest part of 
the wedgc that  is, at the outermost shell of the virus 
particle. If there are very nearly 10~ units in one turn 
of the helix, each unit will occupy a length of 46 A 
on the circumference of radius 75 A. The variation 
in the relative positions of neighbouring units, on this 
radius, is therefore about 0.5 A. On smaller radii the 
shift is correspondingly less. 

Although the absolute value of the difference in 
relative positions of neighbouring units turns out to be 
small, the fact that  such a difference can occur is 
probably significant. I t  suggests again that  there may 
be little specific chemical bonding between protein 
units and their neighbours on the turns of the helix 
immediately above and below (see Franklin, 1955; 
Franklin & Commoner, 1955). The bonding is there- 
fore presumably strongest between neighbours along 
the same turn of the helix, indicating that  the helical 
arrangement of the protein sub-units is of structural, 
and not merely geometrical, significance. 

Finally we may briefly consider the shape of the 
protein sub-unit. X-ray data cannot provide direct 
evidence as to the shape of the true chemical entity: 
it may be anything from the schematical wedge 
mentioned above to a thin disc. In the latter case 
successive discs would have to be rotated by an angle 
(t/u)×2zc = (3/31)×2~ = 34"8 ° with respect to one 
another, in order to account for the helical arrange- 
ment. The thickness of a disc would, however, be only 
69/31 = 2.23 A, so that  it is clearly an impossible 
shape for the real chemical unit (although it may be 
useful formally to describe the unit and its repetition 
as a pile of rotated discs). The actual protein units 
are probably much more similar to the schematical 
wedge, which has a thickness of 23 A. 

We are greatly indebted to Mr N. W. Pirie and to 
Dr A. Siegel for supplying us with purified virus 
solutions. We wish to express our thanks to Prof. 
J.  D. Bernal for his constant interest, and to acknowl- 
edge the financial support of the Agricultural Research 
Council (R. E. F.) and the Nuffield Foundation (A. K.). 
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